OnGIS: Ontology Driven Geospatial Search and Integration

Marek Šmíd, Zdeněk Kouba
{smidmare,kouba}@fel.cvut.cz

Department of Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague

Boston, MA, 12.11.2012
There is a lot of geographical data.

Government institutions collect and maintain them – cadastral, municipal, postal, meteorological, and other maps.

Open international mapping projects, e.g. http://www.openstreetmap.org/.

Have rigid structure.

Suitable for semantic description with ontologies and mutual interlinking, which allows for easy querying.
OnGIS

- Provides non-expert users with simple search over complex heterogeneous geographical data.
- Still allows the queries to have non-trivial structure.
- Access to the data is mediated via semantic layer, which also makes the integration easy.
- It is possible to access data with different structure and variously technically available via OnGIS plugins.
- Uses OWL 2 QL, a profile of semantic languages OWL 2, allowing polynomial querying.
- Is a web application.
Developing cooperation with the department of urban planning of Prague (the capital of the Czech Republic), being a part of City Development Authority of Prague (ÚRM).

- Responsible for collecting many spatial data, e.g. pollution, noise, flood risks, land prices, etc.

- For a general user, looking e.g. for info where to build a house, it is not easy to find places according to his criteria.

- Metadata of its geoportal based on ArcGIS server were extracted into an ontology.
OWL 2 QL

- Supports e.g. sub-class, sub-property, domain and range axioms.
- Goes beyond RDFS expressivity.
- Possesses the open-world assumption.
- Due to its query answering being tractable, it allows performing them directly in relational databases using SQL.
- Its semantics is based on description logics $DL-Lite^H_{core}$.
OWL 2 QL

Basic constructs:

- **B ::= A | ∃R**
- **C ::= B | ¬B**
- **R ::= P | P**

A – concept name

B – basic concept

C – general concept

P – role name

R – complex role

- TBox axioms: \(B \sqsubseteq C \) and \(R_1 \sqsubseteq R_2 \).
- ABox axioms: \(A(a) \) and \(P(a, b) \).
 - \(a, b \) – individuals.

- With the usual semantics.
- Extended with various features not affecting its tractability, e.g. data roles.
OnGIS Form Annotations

- Annotations, which ensure independence of the generic querying system on domain specific ontologies and data structures.

 searchable annotates, what should be searched for a user’s query string.

 geometry annotates objects representing spatial geometries, useful for spatial queries.

 filterable annotates what could be filtered by a string (e.g. an attribute).

 partof specifies part-of relations between objects (integral components).

 displayable annotates what could be displayed on a map.
OnGIS Form Annotations on ÚRM Domain

- Part of OnGIS annotations (blue diamonds) on ÚRM domain terms (yellow rectangles).
- Thick arrows denote annotating.
- Thin arrows denotes annotation values (which are represented with round rectangles).
- E.g. “part of” annotations link to object properties, which relate instances and its integral parts.
Plugin for Connecting to Databases

- One of OnGIS plugins.
- Uses our OWL 2 QL reasoner (OwlgresMM, based on owlgres by Clark&Parsia), which answers semantic queries directly from relational databases.
- It is necessary to map an ontology to database tables.
 - Again done with annotations.
- Supports spatial data in PostGIS (spatial PostgreSQL extension).
OwlgresMM

- Used database schema: class (resp. object/data property) assertions in separate tables per named class (resp. property).
- Allows using multiple databases – query distribution.
- Supports some basic spatial operations:
 - spatial filters (within, within distance, bounding box),
 - geometry accessors (geometry, centroid, area), and
 - aggregation functions (count, min, max, total length and area).
- Being developed to fully support spatial query language GeoSPARQL (an OGC standard), currently only inspired by it.
The prototype uses:

- **OpenStreetMap** – publicly available extensive data of the World.
- **GeoNames** – point data of the World with labels translated to many languages and hierarchically categorized.
 - These two sources are imported into our own relational database (PostgreSQL+PostGIS).
 - They have their ontologies: LinkedGeoData and GeoNames.
- **Geoportal of the department of urban planning of Prague (ÚRM).**
 - ArcGIS server, used remotely.
System Architecture
Using text search (over data properties annotated as \textit{searchable}), the system shows objects from different sources, and the user selects the relevant ones.

These are added to the list of displayed items (the colored rectangles on the next slide).

Various restrictions can be entered into the list:
- spatial: max. distance, “inside” (both for objects annotated as \textit{geometry}), and
 - Their semantics is that a restriction is applied to all other search results (with recursion).
- text filtering (for objects annotated as \textit{filterable}).

Also linking the results pair-wise with spatial restrictions by links is possible, but it is not used in the following example.
Query Example

- **Query:** find places of worship, which are:
 - close to a park (within 100 m),
 - inside a specific part of Prague (borough “Praha 2”).
- **Searching by keywords finds:**
 - “Park” and “Place of worship” in OpenStreetMap ontology,
 - boroughs (“Městské části”) in ÚRM geoportal.
- **Appropriate filters are applied.**
Result of the Example

Displayed with OpenLayers.
Conclusion

- OnGIS is capable to distribute a query to multiple different sources.
- Queries support spatial restrictions.
- Based on OWL ontologies
 - for data source description,
 - for their integration, and
 - for making them available for querying.
- Independence on data source structure and technology.
- Support for spatial data from PostgreSQL+PostGIS, WMS and ArcGIS servers.
- Querying by a simple query form.
Ongoing and Future Work

Ongoing development:
- Structured query by a set theory-like expression with restricted, rigid structure (not a free text), with the help of autocompletion.
- Access to RDF data via SPARQL endpoints.
 - Data in Linked Data initiative, e.g. DBpedia.
 - Some of them contain spatial data using W3C Basic Geo Vocabulary.
- Using object properties (relations) in queries.

Future work:
- Support for other GIS servers (e.g. WFS).
- Fully support GeoSPARQL.
- ...