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Chapter 1

Introduction

This document presents the data model stRDF and the query language stSPARQL,
the new version of the data model stRDF and the query language stSPARQL
respectively. NKUA, in the context of the FP7 ICT project SemsorGrid4Env
1, proposed stRDF and stSPARQL extensions of the W3C standards RDF and
SPARQL for representing and querying spatial data in the Semantic Web .
stRDF and stSPARQL follow the tradition of constraint databases and use
linear constraints for the representation of spatial data. In the new version of
stRDF and stSPARQL, a more practical solution to the problem of representing
geospatial data is proposed, using the OGC standard Well-known Text (WKT)
instead of constraints. These new versions were proposed by NKUA in the con-
text of the FP7 ICT project TELEIOS 2 . In chapter 2, we provide background
information about OGC standards for representing spatial information and co-
ordinate reference systems. Then, we present the data model stRDF (chapter3),
and a part of its integration in the NOA Use Case. Chapter 5 describes the query
language stSPARQL. Chapter 6 introduces the system Strabon, used for storing
stRDF graphs and evaluating stSPARQL queries. Finally, chapter 7 presents a
the use of Strabon in a real world scenario, which involves data retrieval and
rapid mapping based on heterogeneous,linked data comprised datasets.

1http://www.semsorgrid4env.eu/
2http://www.earthobservatory.eu/
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Chapter 2

Background on OGC
Standards

2.1 Background on OGC Standards
In this section we present some well-known standards developed by the Open
Geospatial Consortium (OGC)1. OGC is an international consortium of com-
panies, government agencies and universities participating in a consensus pro-
cess to develop publicly available interoperability standards for geospatial data.
OGC standards focus on solutions for geospatial data and services, GIS data
processing and geospatial data sharing.

The OGC Abstract Specification2 is the conceptual foundation for the OGC
interoperability specifications. The purpose of this specification is to define a
conceptual model which includes the core concepts related to geospatial data,
for which OGC standards will be developed in other technical documents. The
OGC Abstract Specification also defines the basic terminology to be used in
the rest of the OGC specifications. A small subset of this terminology (which
might seem unfamiliar to a newcomer) will be used many times in the rest of
this tutorial, thus we introduce it here.

In OGC terminology, a geographic feature (or simply feature) is an abstrac-
tion of a real world phenomenon and can have various attributes that describe
its thematic and spatial characteristics. For example, a feature can represent an
airport. Thematic information about an airport can include its name, the com-
pany that manages it, etc., while a spatial characteristic is its location on Earth.
The spatial characteristics of a feature are represented using geometries such
as points, lines, and polygons. Each geometry is associated with a coordinate
reference system which describes the coordinate space in which the geometry is
defined.

The organization of the rest of this section is as follows. In Section 2.1.1
we will define the main concepts underlying coordinate reference systems, and
give some background information on the coordinate reference systems we most
often find in applications. In many research papers coordinate systems are given
only a passing mention, and the well-known Cartesian plane (or some subset of

1http://www.opengeospatial.org/
2http://www.opengeospatial.org/standards/as
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it) is assumed to be the geographic space occupied by features. However, this
assumption is not always true in applications, so the following section surveys
the most popular coordinate systems that are in use today. In Section 2.1.2 we
will present the Well-Known Text OGC standard that can be used for represent-
ing geometries and their coordinate reference systems. In Section 2.1.3 we will
present the OpenGIS Simple Feature Access standard that defines a standard
SQL schema that supports storage, retrieval, query and update of collections
of features using SQL. This standard is today used in all relational DBMSs
that offer support for geospatial data. It is also the basis for the stSPARQL
and GeoSPARQL query languages discussed later, thus it is covered in detail.
In Section 2.1.4 we will present the Geography Markup Language which is a
more recent standard defined by OGC for representing geographical features
in XML. Both of these standards have been recently used in data models and
query languages for linked geospatial data, thus we present them in detail here.

2.1.1 Coordinate Reference Systems
A coordinate is one of n scalar values that determines the position of a point
in an n-dimensional space. A coordinate system is a set of mathematical rules
for specifying how coordinates are to be assigned to points. For example, the
well-known Cartesian coordinate system assigns positions to points relative to
n mutually perpendicular axes. A coordinate reference system is a coordinate
system that is related to an object (e.g., the Earth, a planar projection of the
Earth, a three dimensional mathematical space such as Z3) through a so called
datum which specifies its origin, scale, and orientation. In the relevant literature,
a coordinate reference system is also referred to as a spatial reference system.
Various kinds of coordinate reference systems exist. In what follows we discuss
geographic and projected coordinate systems because they are the ones most
often found in GIS applications.

A geographic coordinate reference system is a three-dimensional coordinate
system that utilizes latitude, longitude, and optionally elevation, to capture
geographic locations on Earth. Detailed definitions for latitude, longitude and
elevation (technically, geodetic height) can be found in [LGMR05]. The World
Geodetic System (WGS) is the most well-known geographic coordinate reference
system and its latest revision is WGS843. WGS84 is the reference coordinate
system used by the Global Positioning System.

Although a geographic coordinate system such as WGS84 is a comprehensive
way to describe locations on Earth, some applications work on a projection of
the Earth even though there is a price to pay in terms of distortions that such a
projection causes. In these cases a projected coordinate reference system is used
that transforms the 3-dimensional ellipsoid approximation of the Earth into a
2-dimensional surface. In general, projected coordinate reference systems are
always associated with a geographic coordinate system and it is important to
understand the compromises made by it when computing the projection of the
Earth.

An example of a projected coordinate reference system with world coverage
is the Universal Transverse Mercator (UTM) system. UTM uses the WGS84
ellipsoid approximation of the Earth as the underlying geographic coordinate

3http://en.wikipedia.org/wiki/WGS84/
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Figure 2.1: The transverse Mercator projection of UTM

system. It is based on the transverse Mercator projection of the Earth on a 2-
dimensional plane. Intuitively, this projection is obtained if we form a cylinder
by wrapping a piece of paper around the Earth’s poles, projecting on it the
ellipsoid of Earth, and then unwrapping it (see Figure 2.1). As shown on the
same figure, UTM is not a single projection system. It is based on a grid which
divides the Earth into sixty zones of equal width, so that each zone can use
a fine-tuned transverse Mercator projection that is capable of projecting the
corresponding region of the Earth with a low amount of distortion.

Individual countries or states (e.g., in the USA) have their own projected
coordinate reference systems that are more precise for their geographic area. For
example, the Greek Geodetic Reference System 1987 (GGRS87)4 is a projection
system commonly used in Greece which is based on the local coordinate reference
system Geodetic Reference System 1980 (GRS80)5.

Various authorities provide information about popular coordinate reference
systems. For example, OGC maintains a list with the URIs of various systems6.
The European Petroleum Survey Group (EPSG) also provides a big collection
of coordinate reference systems7. The identifiers of coordinate reference systems
assigned by these authorities are used in geospatial data standards, e.g., Well-
Known Text, to be discussed below.

2.1.2 Well-Known Text
Well-Known Text (WKT) is a widely used OGC standard for representing ge-
ometries. WKT can be used for representing geometries, coordinate reference
systems, and transformations between coordinate reference systems. WKT is
described in the “OpenGIS Simple Feature Access - Part 1: Common Architec-
ture” specification [OGC10d] that is the same as the ISO 19125-1 standard. This
standard concentrates on ways to represent and manipulate simple features. A
simple feature is a feature with all spatial attributes described piecewise by a
straight line or a planar interpolation between sets of points.

4http://spatialreference.org/ref/epsg/4121/
5http://spatialreference.org/ref/epsg/6121/
6http://www.opengis.net/def/crs/
7http://www.epsg-registry.org/
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Figure 2.2: The classes of geometries in WKT (figure from [OGC10d])

Geometries in WKT are restricted to 0-, 1- and 2- dimensional geometries
that exist in R2, R3, or R4. Geometries that exist in R2 consist of points with
coordinates x and y, e.g., POINT(1 2) in WKT syntax. Geometries that exist
in R3 consist of points with coordinates x, y, and z, or x, y, and m where m
is a measurement. For example, the point POINT(37.96 23.71 27) might be
used to represent the temperature of the city of Athens measured in Celcius
degrees; where 37.96 is the latitude of Athens, 23.71 its longitude, and 27 its
temperature. Geometries that exist in R4 have points with coordinates x, y, z,
and m with similar semantics.

Geometries represented using WKT have the following properties:

• All geometries are topologically closed which means that all the points
that comprise the boundary of the geometry are assumed to belong to
the geometry, even though they may not be explicitly represented in the
geometry.

• All coordinates within a geometry are in the same coordinate reference
system.

• For geometric objects that exist in R3 and R4, spatial operations work
on their “map geometries”, that is, their projections on R2. Therefore,
the z and m values are not reflected in calculations (e.g., when invoking
functions equals, intersects, etc.) or in the generation of new geometry
values (e.g., when invoking functions buffer, minimum bounding box, etc.
). Thus, the WKT specification is inherently about 2-dimensional geome-
tries, but it also allows z and m values associated with these geometries
and functions to access them.

Let us now present the part of the standard that defines how to represent
vector geometries. In Figure 2.2 we present the class hierarchy for simple fea-
ture geometries represented in WKT as defined in [OGC10d]. The top Geometry
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class has subclasses Point, Curve, Surface, and Geometry Collection. The Ge-
ometry Collection is further specialized to classes of 0-, 1- and 2- dimensional
geometries named MultiPoint, MultiLineString and MultiPolygon respectively.
Each geometry is linked to a specific coordinate reference system and optionally
to a measure reference system. A measure reference system may be used to
interpret the third or fourth dimension of geometries that exist in R3 or R4.
For example, a fire hotspot can be modeled as a point that has x, y, and m
coordinates, where the coordinates x and y are used to represent the location
of the hotspot, while the m coordinate represents the measured temperature.

Let us provide some more information for each class depicted in Figure 2.2.

• Point. A point represents a single location in coordinate space. A point
has x and y coordinate values and may have z and m depending on the
associated coordinate reference system.

• Curve. A curve is a 1-dimensional geometry. The subtypes of class curve
define the type of interpolation that is used between points.

• LineString. A line string is a subtype of class curve that uses linear
interpolation between points. A line string is closed if its start point is
equal to its end point. A line string is simple if it has no self-intersections.

• Line. A line is a line string with exactly two points.

• LinearRing. A linear ring is a line string that is both closed and simple.

• Surface. A surface is a 2-dimensional geometry. This class is abstract
(i.e., it may not be instantiated). A simple surface may consist of a single
“patch” that has one “exterior” boundary and 0 or more “interior” bound-
aries (e.g. a polygon with holes).

• Polygon. A polygon is a simple surface that is planar. It has exactly one
exterior boundary and may have several non-intersecting interior bound-
aries. Each polygon is topologically closed and no two boundaries (interior
or exterior) cross. However, two boundaries may intersect at a point, but
only as a tangent. The interior of a polygon is a connected point-set while
the exterior of a polygon with holes is not connected.

• Triangle. A triangle is a polygon with 3 distinct, non-collinear vertices
and no interior boundary.

• Polyhedral Surface. A polyhedral surface is a contiguous collection of
polygons which share common boundary segments. Each pair of polygons
that touch has a common boundary that is expressed as a finite collection
of line strings. Each such line string is a part of the boundary of at most
2 polygon patches.

• Triangulated Irregular Network. A triangulated irregular network is
a polyhedral surface consisting only of triangle patches.

• Geometry Collection. A geometry collection is a set of distinct geome-
tries.
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• MultiPoint. This is a geometry collection whose elements are points that
are not connected.

• MultiCurve. A multi-curve is a geometry collection whose elements are
curves.

• MultiLineString. A multi-line string is a geometry collection whose
elements are line strings.

• MultiSurface. A multi-surface is a 2-dimensional geometry collection
whose elements are surfaces. The geometric interiors of any two surfaces
may not intersect. The boundaries of any two surfaces may not cross but
may touch at a finite number of points.

• MultiPolygon. A multi-polygon is a multi-surface collection whose ele-
ments are polygons. The boundaries of each polygon may not intersect.

The syntax of the WKT representation of a geometry is presented in detail
in [OGC10d]. Some examples of geometries represented in WKT are shown in
Table 2.1.

The interpretation of the coordinates of a geometry depends on the coordi-
nate reference system that is associated with the geometry. Note that according
to the WKT standard, the coordinate reference system that is associated to a ge-
ometry is never embedded in the object’s representation, but is given separately
using appropriate notation.

2.1.3 OpenGIS Simple Feature Access
The “OpenGIS Simple Feature Access - Part 2: SQL Option” standard [OGC10c]
defines a standard SQL schema that supports storage, retrieval, query and up-
date of sets of simple features using SQL. This OGC standard is the same as
the ISO 19125-2 standard. The simple features supported by this standard have
both spatial and non-spatial (thematic) attributes. The spatial attributes are
geometries of the types described in Section 2.1.2. This standard assumes that
sets of simple features are stored as relational tables and each feature is a row
in a table. The spatial attributes of the features are represented as geometry-
valued columns, while non-spatial attributes are represented as columns whose
types are the standard SQL data types. There are also additional tables that
are used to store information about features and coordinate reference systems.
The standard describes schemas for two types of feature table implementations:
implementations using only the SQL predefined data types and SQL with ge-
ometry types. Only the latter approach is covered here.

The “SQL with geometry types” approach uses WKT geometry classes pre-
sented in Section 2.1.2 to define new geometric data types for SQL together
with SQL functions on those types.

The following SQL functions have been defined for requesting the desired
representation of a geometry, checking whether some condition holds for a ge-
ometry and returning some properties of the geometry:

1. ST_Dimension(A:Geometry):Integer, returns the inherent dimension of

10



Table 2.1: Examples of geometries represented in WKT
Geometry
type WKT representation Geometry

Point Point(5 5)

LineString LineString(5 5,28 7,44 14,47 35,40 40,20 30)

Polygon Polygon((5 5,28 7,44 14,47 35,40 40,20 30,5 5))

Polygon
Polygon((5 5,28 7,44 14,47 35,40 40,20 30,5 5),

(28 29,14.5 11,26.5 12,37.5 20,28 29))

MultiPoint
MultiPoint((5 5),(28 7),(44 14),

(47 35),(40 40),(20 30))

Geometry
Collection

GeometryCollection(
Point(5 35),
LineString(3 10,5 25,15 35,20 37,30 40),
Polygon((5 5,28 7,44 14,47 35,40 40,20 30,5 5),

(28 29,14.5 11,26.5 12,37.5 20,28 29))
)

the geometry A, which must be less than or equal to the coordinate di-
mension8.

2. ST_GeometryType(A:Geometry):String, returns the name of the instan-
tiable subtype of Geometry as defined in [OGC10d], of which the geometry
A is an instantiable member.

3. ST_AsText(A:Geometry):String, exports the geometry A as its WKT
representation.

4. ST_AsBinary(A:Geometry):Binary, exports the geometry A as its Well-
Known Binary9 representation.

8The prefix ST is a historical one and comes from the spatial part of the SQL/MM standard
[Sto03]. It was meant to denote “spatial and temporal”, but temporal issues were not included
finally in that standard.

9Well-Known Binary is an equivalent to the WKT format for the representation of a ge-

11



5. ST_SRID(A:Geometry):Integer, returns the coordinate reference system
identifier for the geometry A.

6. ST_IsEmpty(A:Geometry):Boolean, returns true if the geometry A is the
empty geometry. Otherwise, it returns false.

7. ST_IsSimple(A:Geometry):Boolean, returns true if the geometry A has
no anomalous geometric points, such as self intersection or self tangency.
Otherwise, it returns false.

The following SQL functions have been defined for testing topological spatial
relationships between two geometries. These functions correspond to the rela-
tions from the dimensionally extended 9-intersection model of Egenhofer and
Clementini defined in [CSE94].

1. ST_Equals(A:Geometry, B:Geometry):Boolean, returns true if the ge-
ometry A is “spatially equal” to the geometry B. Otherwise it returns false.

2. ST_Disjoint(A:Geometry, B:Geometry):Boolean, returns true if the ge-
ometry A is “spatially disjoint” to the geometry B. Otherwise it returns
false.

3. ST_Intersects(A:Geometry, B:Geometry):Boolean, returns true if the
geometry A “spatially intersects” the geometry B. Otherwise it returns false.

4. ST_Touches(A:Geometry, B:Geometry):Boolean, returns true if the ge-
ometry A “spatially touches” the geometry B. Otherwise it returns false.

5. ST_Crosses(A:Geometry, B:Geometry):Boolean, returns true if the ge-
ometry A “spatially crosses” the geometry B. Otherwise it returns false.

6. ST_Within(A:Geometry, B:Geometry):Boolean, returns true if the ge-
ometry A is “spatially within” to the geometry B. Otherwise it returns
false.

7. ST_Contains(A:Geometry, B:Geometry):Boolean, returns true if the ge-
ometry A “spatially contains” the geometry B. Otherwise it returns false.

8. ST_Overlaps(A:Geometry, B:Geometry):Boolean, returns true if the ge-
ometry A “spatially overlaps” the geometry B. Otherwise it returns false.

9. ST_Relate(A:Geometry, B:Geometry, intersectionPatternMatrix:
String):Boolean, returns true if the geometry A is “spatially related” to
the geometry B by testing for intersections between the interior, bound-
ary and exterior of the two geometries as specified by the values in the
intersectionPatternMatrix according to the Egenhofer and Clementini
intersection pattern matrix (DE-9IM) of [CFO93, CSE94].

The following SQL functions have been defined for constructing new geo-
metric objects from existing geometries.

ometry and is also defined in [OGC10d]. The object is represented as a contiguous stream of
bytes, thus facilitating its exchange between a database client and server.
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1. ST_Boundary(A:Geometry):Geometry, returns a geometry that is the bound-
ary of the geometry A.

2. ST_Envelope(A:Geometry):Geometry, returns a geometry that is the min-
imum bounding box for the input geometry A.

3. ST_Intersection(A:Geometry, B:Geometry):Geometry, returns a ge-
ometry that represents the point set intersection of the geometries A and
B.

4. ST_Union(A:Geometry, B:Geometry):Geometry, returns a geometry that
represents the point set union of the geometries A and B.

5. ST_Difference(A:Geometry, B:Geometry):Geometry, returns a geome-
try that represents the point set difference of the geometries A and B.

6. ST_SymDifference(A:Geometry, B:Geometry):Geometry, returns a ge-
ometry that represents the point set symmetric difference of the geometries
A and B.

7. ST_ConvexHull(A:Geometry):Geometry, returns a geometry that repre-
sents the convex hull of the geometry A.

8. ST_Buffer(A:Geometry, distance:Double):Geometry, returns a geom-
etry that represents all points whose distance from the geometry A is less
than or equal to distance. The relevant calculation is done in the coor-
dinate reference system of this geometry.

The ST_Distance(A:Geometry, B:Geometry):Double SQL function is de-
fined for calculating the shortest distance between two geometries. The calcu-
lated scalar value corresponds to the shortest distance of these two geometries
measured in the unit system of their coordinate reference system.

The standard ISO 13249 SQL/MM is an international standard for multi-
media and other application extensions of SQL. Part 3 of this standard defines
a set of types and methods for representing, processing, storing and querying
spatial data in relational databases [Sto03, ME01]. The SQL/MM standard for
spatial data is very close to the OpenGIS Simple Feature Access standard pre-
sented here and, in fact, the two efforts influenced each other. Therefore, we do
not give any details about it in this document.

2.1.4 Geography Markup Language
The Geography Markup Language (GML) [OGC07] is the most common XML-
based encoding standard for the representation of geospatial data. GML was
developed by the OGC and it is based on the OGC Abstract Specification. GML
provides XML schemas for defining a variety of concepts that are of use in Ge-
ography: geographic features, geometry, coordinate reference systems, topology,
time and units of measurement. Initially, the GML abstract model was based
on RDF and RDFS, but later the consortium decided to use XML and XML
Schema. The GML profiles are logical restrictions of GML that might be of use
to applications that do not want to use the whole of GML. GML profiles can be
specified through an XML document, an XML schema, or both. Some of the

13



Table 2.2: Examples of geometries represented in GML
Geometry
type GML representation Geometry

Point

<gml:Point gml:id="p1"
srsName="urn:ogc:def:crs:EPSG:6.6:4326">
<gml:coordinates>5,5</gml:coordinates>

</gml:Point>

Polygon

<gml:Polygon gml:id="p3"
srsName="urn:ogc:def:crs:EPSG:6.6:4326">
<gml:exterior>
<gml:LinearRing>
<gml:coordinates>
5,5 28,7 44,14 47,35
40,40 20,30 5,5

</gml:coordinates>
</gml:LinearRing>

</gml:exterior>
</gml:Polygon>

profiles that have been proposed for public use are: (i) Point Profile, which de-
fines a simple point geometry in GML, (ii) GML Simple Features Profile, which
is the GML encoding of Simple Features for SQL discussed in Section 2.1.3, (iii)
a GML profile for JPG, and (iv) a GML profile for RSS. It should be noted that
GML profiles are different from application schemas. The profiles are part of
the GML namespaces (OpenGIS GML) and define restricted subsets of GML.
Applications schemas are XML vocabularies that are application-specific and
are valid inside the application-specific namespaces. Application schemas can
be built on specific GML profiles or use the full GML specification.

The GML Simple Features Profile [OGC10a] and the Simple Features for
SQL presented in Section 2.1.3 have similar structure and describe similar ge-
ometries. However, the GML Simple Features Profile can also have geometries
in three dimensions while Simple Features for SQL can have geometries of up to
only two dimensions. In the GML Simple Features Profile, a feature can have
any number of geometric properties, and every geometry should be referenced
to a coordinate reference system that has 1, 2 or 3 dimensions.

Since the GML Simple Features Profile can represent similar geometries with
WKT, we present in Table 2.2 two examples only showing the GML representa-
tion of a point and a polygon. The complete syntax of the GML representation
of a geometry is presented in [OGC07].

GML completes our discussion of OGC standards. We now move to discuss a
category of successful systems that use these standards today: relational DBMSs
with geospatial data support.
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Chapter 3

The New Versions of stRDF
and stSPARQL

In the most recent version1 of stRDF [KKN+11] we use OGC standards for the
representation of geospatial data. The datatypes strdf:WKT and strdf:GML are
introduced to represent geometries serialized using the OGC standards WKT
and GML which were presented in Section 2.1.4.

Given the OGC specification for WKT, the datatype strdf:WKT2 is defined
as follows. The lexical space of this datatype includes finite-length sequences of
characters that can be produced from the WKT grammar defined in the WKT
specification, optionally followed by a semicolon and a URI that identifies the
corresponding CRS. The default case is considered to be the WGS84 coordinate
reference system. The value space is the set of geometry values defined in the
WKT specification. These values are a subset of the union of the powersets of
R2 and R3.

The lexical and value space for strdf:GML are defined similarly. In this
case, since the GML grammar allows us to state coordinate reference systems
for the geometries we define, we do not have a separate component for them in
strdf:GML literals as we do for strdf:WKT literals.

The datatype strdf:geometry is also introduced to represent the serial-
ization of a geometry independently of the serialization standard used. The
datatype strdf:geometry is the union of the datatypes strdf:WKT and strdf:GML,
and appropriate relationships hold for their lexical and value spaces.

Both the original [KK10] and the new version of stRDF impose minimal
new requirements to Semantic Web developers that want to represent spatial
objects with stRDF; all they have to do is utilize a new literal datatype. These
datatypes (strdf:WKT, strdf:GML and strdf:geometry) can be used in the
definition of geospatial ontologies needed in applications, e.g., ontologies similar
to the ones defined in [Per08]. The same approach based on spatial literals
has also recently been used independently in the paper [BNM10] and also in
the GeoSPARQL standard [OGC10b]. The datatype strdf:geometry can be
used in the definition of geospatial ontologies that would like to use stRDF, e.g.,

1The initial versions of stRDF and stSPARQL, based on the use of constraints, can be
found here: [KK10]

2http://strdf.di.uoa.gr/ontology
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ontologies similar to the ones defined in [Per08, OGC10b]. Let us now give some
examples of modeling thematic and spatial data in stRDF (Turtle notation is
used).

stRDF triples derived from GeoNames3 that represent information about
the Greek towns Olympia and Zacharo including an approximation of their
geometries.

geonames:264637 geonames:name "Olympia";
owl:sameAs dbpedia:Olympia_Greece;
rdf:type noa:Town;
strdf:hasGeometry "POLYGON((21.5 18.5, 23.5 18.5,

23.5 21, 21.5 21, 21.5 18.5));
<http://www.opengis.net/def/crs/EPSG/0/4326>"
^^strdf:WKT.

geonames:251283 geonames:name "Zacharo";
rdf:type noa:Town;
strdf:hasGeometry "POLYGON((19 19, 21 19, 21 21,

19 21, 19 19));
<http://www.opengis.net/def/crs/EPSG/0/4326>"
^^strdf:WKT.

The above triples represent some information about the Greek towns Olympia
and Zacharo including an approximation of their geometry modified for the
purposes of our example. GeoNames normally utilizes the W3C Basic Geo
vocabulary4 which is a basic ontology and OWL vocabulary for representing
geospatial properties for Web resources. Instead of this, we use a typed literal
of the data type strdf:WKT to define a polygon approximation of the geometry
of the town encoded in WKT. The data type strdf:WKT (resp. strdf:GML)
is similar to the data type strdf:geometry but is used to represent spatial
objects using the WKT (resp. GML) serialization. Notice that a URI is used to
denote that the coordinates of these geometries are given in the WGS84 using
the syntax that we discussed above. This is also considered to be the default
case in our approach, thus in this example the presence of this URI is optional.

stRDF triples produced from the processing chain of the National Observa-
tory of Athens that represent burnt areas.

noa:BA1 a noa:BurntArea;
noa:hasConfirmation noa:verified;
strdf:hasGeometry "POLYGON((20 20, 20 22,

22 22, 22 20, 20 20))"^^strdf:WKT.
noa:BA2 a noa:BurntArea;

noa:hasConfirmation noa:verified;
strdf:hasGeometry "POLYGON((23 18, 24 19,

23 19, 23 18))"^^strdf:WKT.
noa:BA3 a noa:BurntArea.

noa:hasConfirmation noa:verified;
strdf:hasGeometry "POLYGON((20 15, 21 15,

21 16, 20 15))"^^strdf:WKT.
3http://www.geonames.org/
4http://www.w3.org/2005/Incubator/geo/XGR-geo/
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The above triples describe burnt areas that have been generated by the National
Observatory of Athens and will be utilized in the following examples of this
chapter.

Let us now present the main features of the new version of stSPARQL.
stSPARQL is an extension of SPARQL 1.1 with functions that take as arguments
spatial terms and can be used in the SELECT, FILTER, and HAVING clause of
a SPARQL 1.1 query. A spatial term is a spatial literal (i.e., a typed literal with
datatype strdf:geometry), a query variable that can be bound to a spatial
literal, the result of a set operation on spatial literals (e.g., union), or the result
of a geometric operation on spatial terms (e.g., buffer).

The new version of stSPARQL extends SPARQL 1.1 with the machinery of
the OpenGIS Simple Feature Access standard which was presented in Chapter
2.1. We achieve this by defining a URI for each of the SQL functions defined in
the standard and use them in SPARQL queries. For example, for the function
ST_IsEmpty defined in the OGC-SFA standard, we introduce the SPARQL ex-
tension function

xsd:boolean strdf:isEmpty(strdf:geometry g)
which takes as argument a spatial term g, and returns true if g is the empty
geometry. Similarly, we have defined a Boolean SPARQL extension function for
each topological relation defined in OGC-SFA (topological relations for simple
features), [Ege89] (Egenhofer relations) and [CBGG97] (RCC-8 relations). In
this way stSPARQL supports multiple families of topological relations our users
might be familiar with. Using these functions stSPARQL can express spatial
selections, i.e., queries with a FILTER function with arguments a variable and a
constant (e.g., strdf:contains(?geo, "POINT(1 2)"^^strdf:WKT)), and spa-
tial joins, i.e., queries with a FILTER function with arguments two variables (e.g.,
strdf:contains(?geoA, ?geoB)).

The SPARQL extension functions corresponding to the SQL functions of the
OpenGIS Simple Feature Access standard can be used in the SELECT clause of
a SPARQL query. As a result, new spatial literals can be generated on the fly
during query time based on pre-existing spatial literals. For example, to obtain
the buffer of a spatial literal that is bound to the variable ?GEO, we would use
the following select expression:

SELECT (strdf:buffer(?geo,0.01) as ?geobuffer)
One of the new features in SPARQL 1.1 is support for aggregate functions.

In stSPARQL we have introduced the following three aggregate functions that
deal with geospatial data:

• strdf:geometry strdf:union(set of strdf:geometry a), returns a ge-
ometric object that is the union of the set of input geometries.

• strdf:geometry strdf:intersection(set of strdf:geometry a), re-
turns a geometric object that is the intersection of the set of input geome-
tries.

• strdf:geometry strdf:extent(set of strdf:geometry a), returns a
geometric object that is the minimum bounding box of the set of input
geometries.

More aggregate functions may be added in the future if we identify a need
for them in applications. stSPARQL also supports update operations (insertion,
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deletion, and update of stRDF triples) conforming to the declarative update
language for SPARQL, SPARQL Update 1.1, which is a current proposal of
W3C.

The following examples demonstrate the functionality of stSPARQL.
Return the names of towns that have been affected by fires.

SELECT ?name
WHERE { ?town a noa:Town;

geonames:name ?name;
strdf:hasGeometry ?townGeom.

?ba a noa:BurntArea;
strdf:hasGeometry ?baGeom.

FILTER(strdf:overlap(?townGeom,?baGeom))}

The result of the query evaluated on the data sets of Example 3 and 3 is
displayed below:

?name
"Olympia"
"Zacharo"

The query above demonstrates how to use a topological function in a query.
The results of this query are the names of the towns whose geometries “spatially
overlap” the geometries corresponding to areas that have been burnt.

Isolate the parts of the burnt areas that lie in coniferous forests.

SELECT ?ba (strdf:intersection(?baGeom,strdf:union(?fGeom)) AS ?burnt)
WHERE { ?ba a noa:BurntArea. ?ba strdf:hasGeometry ?baGeom.

?f a noa:Area. ?f noa:hasLandCover noa:coniferousForest.
?f strdf:hasGeometry ?fGeom.
FILTER(strdf:intersects(?baGeom,?fGeom)) }

GROUP BY ?ba ?baGeom

The query above tests whether a burnt area intersects with a coniferous for-
est. If this is the case, groupings are made depending on the burnt area. The
geometries of the forests corresponding to each burnt area are unioned, and
their intersection with the burnt area is calculated and returned to the user.
Note that only strdf:union is an aggregate function in the SELECT clause;
strdf:intersection performs a computation involving the result of the aggre-
gation and the value of ?baGeom which is one of the variables determining the
grouping according to which the aggregate computation is performed.

The result of the query evaluated on the data sets of Example 3 and 3 is
displayed below:
?ba ?burnt
geonames:264637 "POLYGON ((20 21, 20 22, 22 22, 22 21, 21.5 21,

21.5 20, 21 20, 21 21, 20 21))"ˆˆstrdf:WKT
geonames:251283 "MULTIPOLYGON (((23.5 18.5, 23 18, 23 18.5,

23.5 18.5)), ((23.5 19, 24 19, 23.5 18.5, 23.5
19)))"ˆˆstrdf:WKT
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Chapter 4

The system Strabon

In this chapter we present Strabon, a storage and query evaluation module for
stRDF/stSPARQL which is currently under development by our group. In the
following sections, we present Strabon’s architecture and provide instructions
to install and use Strabon for storing stRDF data and evaluating stSPARQL
queries respectively.

4.1 Strabon architecture
We decided to base our implementation on the widely-known RDF store Sesame1.
Even though Sesame is not the most efficient RDF store available, we decided
to base our implementation on it because of its open-source nature, its layered
architecture, its wide range of functionalities and the ability to integrate a ‘spa-
tially enabled’ DBMS in order to exploit its variety of spatial functions and
operators. Sesame was extended in order to manage both thematic and spa-
tial RDF data that are subsequently stored in PostGIS2. PostGIS is an add-on
module for PostgreSQL3 that ‘spatially enables’ PostgreSQL by adding support
for geospatial objects.

Our aim when we started the implementation was creating a layer that could
be included in Sesame’s software stack in a transparent way so that it does not
affect Sesame’s range of functionalities, while at the same time benefits by new
versions of Sesame. Strabon can now be considered a Sesame SAIL that can
be placed on top of an existing Sesame installation without affecting its current
functionality. We were vindicated by this approach, since our second round of
system development coincided with versions of Sesame that introduced support
for SPARQL 1.1.

Strabon follows the modular architecture of Sesame and comprises three
modules:
Query Engine. Strabon’s query engine evaluates the stSPARQL query posed
to the system. After a query is received, it is parsed and optimized. Then
an execution plan is created and executed, and the results are returned to the
client. Sesame’s evaluator and optimizer have been extended in order to handle

1http://www.openrdf.org
2PostGIS, http://postgis.refractions.net/
3PostgreSQL, http://www.postgresql.org/
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Figure 4.1: The Strabon system architecture

stSPARQL queries. The parser and transaction manager were not modified.
Storage Manager. This module handles data storage in the PostGIS RDBMS
layer. We have extended Sesame’s components in order to be able to store the
spatial literals we described in 3.
PostGIS. PostGIS is used both for the storage of stRDF data and the evalua-
tion of stSPARQL queries.

4.2 Installing Strabon
Using Strabon on top of PostGIS:

• Install PostgreSQL 9.0 or higher. More information can be found at http:
//www.postgresql.org/download/.

$> sudo apt-get install postgresql-9.1

• Install PostGIS 1.5 or higher. More information can be found at http:
//postgis.refractions.net/download/.

$> sudo apt-get install postgresql-9.1-postgis

• Provide a password for default user (postgres)

$> sudo -u postgres psql -c "ALTER USER postgres WITH PASSWORD ’postgres’;"

4.2.1 Creating a spatially enabled database
Spatially-enabled databases permit the use of spatial function calls. MonetDB
creates spatially-enabled databases by default if you have enabled the geom
module. More information on how to create a spatially-enabled database in
PostGIS can be found at http://postgis.refractions.net/docs/.

• Set postgis-1.5 path.
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$> POSTGIS_SQL_PATH=‘pg_config --sharedir‘/contrib/postgis-1.5

• Create the spatial database that will be used as a template.

$> createdb -E UTF8 -T template0 template_postgis

• Add PLPGSQL language support.

$> createlang -d template_postgis plpgsql

• Load the PostGIS SQL routines.

$> psql -d template_postgis -f $POSTGIS_SQL_PATH/postgis.sql
$> psql -d template_postgis -f $POSTGIS_SQL_PATH/spatial_ref_sys.sql

• Allow users to alter spatial tables.

$> psql -d template_postgis -c "GRANT ALL ON geometry_columns TO PUBLIC;"
$> psql -d template_postgis -c "GRANT ALL ON geography_columns TO PUBLIC;"
$> psql -d template_postgis -c "GRANT ALL ON spatial_ref_sys TO PUBLIC;"

• Perform garbage collection.

$> psql -d template_postgis -c "VACUUM FULL;"
$> psql -d template_postgis -c "VACUUM FREEZE;"

• Allows non-superusers the ability to create from this template.

$> psql -d postgres -c "UPDATE pg_database SET datistemplate=’true’
WHERE datname=’template_postgis’;"

$> psql -d postgres -c "UPDATE pg_database SET datallowconn=’false’
WHERE datname=’template_postgis’;"

• Create a spatially-enabled database named endpoint.

$> createdb endpoint -T template_postgis

4.3 Compiling and Running Strabon
The following sections describe how we can download, install and use Strabon.
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4.3.1 Download and Compile Strabon
In order to download and compile Strabon, the steps below should be followed:

• Clone the source code of the TELEIOS system from the TELEIOS mer-
curial repository hosted by ACS.

$> hg clone ssh://opteleios@teleios-repo.acsys.it//home/opteleios/TELEIOS/system

• Change to the directory that Strabon source code resides in.

$> cd system/components/Strabon

• Build Strabon.

$> mvn clean package

4.3.2 Store
If the installation of Strabon has been completed successfully, the user can
proceed to store an stRDF dataset. If PostGIS is used as the relational backend,
the user has to execute the StoreOp class of the package eu.earthobservatory.
runtime.postgis of module strabon-runtime.

This class requires the following arguments:

• HOST: The name of the database host (e.g., localhost)

• PORT: The port which your connection listens to.

• DATABASE: The name of the spatially-enabled database you created previ-
ously.

• USERNAME: The username used to connect to the database.

• PASSWORD: The password used to connect to the database.

• FILE: The stRDF document to be stored.

• FORMAT: The format of the triples.

We present an example on how to run Strabon from a console, connect to
PostgreSQL and store an RDF file. Let us assume that the file shown in Figure
4.2 resides in /tmp/triples.nt (encoded according to the N3 format) and a
spatially-enabled database named endpoint has been created:

After executing the following command the file will be stored in the endpoint
database.

$> cd jars/target && java -cp $(for file in ‘ls -1 *.jar‘; do myVar=$myVar./$file":";
done;echo $myVar;) eu.earthobservatory.runtime.postgis.StoreOp localhost 5432 endpoint
postgres postgres /tmp/triples.nt N3
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@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix : <http://example.org/book/> .
@prefix ns: <http://example.org/ns#> .

:book1 dc:title "SPARQL Tutorial" .
:book1 ns:price 42 .
:book2 dc:title "The Semantic Web" .
:book2 ns:price 23 .

Figure 4.2: Example triples in N3 format

4.3.3 Query
If storing has completed successfully, evaluation of stSPARQL queries can be
performed using Strabon. The user has to use the corresponding QueryOp class
of the package eu.earthobservatory.runtime.postgis or eu.earthobservatory.
runtime.monetdb of module strabon-runtime. This class requires the follow-
ing arguments:

• HOST: The name of the database host (e.g., localhost)

• PORT: The port which your connection listens to.

• DATABASE: The name of the spatially-enabled database you created previ-
ously.

• USERNAME: The username used to connect to the database.

• PASSWORD: The password used to connect to the database.

• QUERY: The stSPARQL query to evaluate.

• FORMAT: The format of the results.

Further to our previous example we present how one can run Strabon from
a console, connect to PostgreSQL and evaluate an stSPARQL query. Suppose
that the user wants to retrieve titles of books above a specific value (e.g., 30
dollars). Then, she should run the following command:

$> cd jars/target && java -cp $(for file in ‘ls -1 *.jar‘; do myVar=$myVar./$file":";
done;echo $myVar;) eu.earthobservatory.runtime.postgis.QueryOp localhost 5432 endpoint
postgres postgres "PREFIX dc: <http://purl.org/dc/elements/1.1/> PREFIX ns:
<http://example.org/ns#> SELECT ?title WHERE {?book dc:title ?title. ?book ns:price
?price. FILTER(?price > 30)}";

The results that will be returned are:

?title
“SPARQL Tutorial”
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4.3.4 Update
In addition, one can perform stSPARQL updates in Strabon by using the
UpdateOp class of the package eu.earthobservatory.runtime.postgis of mod-
ule strabon-runtime. This class requires the following arguments:

• HOST: The name of the database host (e.g., localhost)

• PORT: The port which your connection listens to.

• DATABASE: The name of the spatially-enabled database you created previ-
ously.

• USERNAME: The username used to connect to the database.

• PASSWORD: The password used to connect to the database.

• UPDATE: The stSPARQL update query to evaluate.

Update functionality using MonetDB as a relational backend is currently
work in progress, and will be fully implemented in subsequent releases of Stra-
bon.

In the following example, the command given replaces the price of book “The
Semantic Web” with a higher one.

$> cd jars/target && java -cp $(for file in ‘ls -1 *.jar‘; do myVar=$myVar./$file":";
done; echo $myVar;) eu.earthobservatory.runtime.postgis.UpdateOp localhost 5432 endpoint
postgres postgres "PREFIX dc: <http://purl.org/dc/elements/1.1/> PREFIX ns:
<http://example.org/ns#> DELETE {?book ns:price ?price} INSERT {?book ns:price 32} WHERE
{?book dc:title \"The Semantic Web\". ?book ns:price ?price.}";

After executing this command the results of the previous query will be:

?title
“SPARQL Tutorial”
“The Semantic Web”
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Chapter 5

Using Strabon in a real world
scenario

In this chapter we present how Strabon can be used in a real world scenario,
using linked data to compose more sophisticated queries than the ones already
presented. So, we first describe briefly the corresponding ontologies, and then,
we present stSPARQL queries based on them. The scenario is based on the NOA
Use Case of TELEIOS, which involves the use of linked data in fire monitoring
applications. Finally, some rapid mapping examples are presented.

5.1 Ontologies
The following ontologies will be presented in this section:

• the Noa Ontology

• The Corine Land Cover Ontology

• Linked Geodata

• Geonames

• Greek administrative geography

5.2 NOA Ontology
The NOA Ontology covers useful properties of the data collections that are being
used or produced by the NOA processing chain, in the context of the NOA Fire
Monitoring application. In the NOA Ontology, the data is distinguished into
three major categories:

RawData. Instances of this class describe files with raw data.

Hotspot. Instances of this class describe hotspots that were detected by pro-
cessing in raw data.

ShapeFile. An ESRI shapefile is created from all hotspots detected by a spe-
cific acquisition. Instances of this class describe these ESRI shapefiles.
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Other classes that are defined in NOA Ontology are:

Coastline. Instances of this class describe areas which define coastline of Greece.

ConfirmationValue. This class contains only three instances confirmed. noa:false\_alarm
and noa:unknown and noa:confirmed. These instances are assigned to
hotspots and indicate if the hotspot has been confirmed to be a fire or a
false alarm. The instance unknown represents that no confirmation has
yet taken place.

Organization. This class contains instances that represent EO Organizations
(e.g.: NOA, FIRMS, EFFIS)

• noa:BurntArea. This class corresponds to the burnt area mapping prod-
ucts available from FMM-2 service.

• noa:Hotspot. This class in its turn has a direct relation with the fire
monitoring products from FMM-1 service.

• noa:Coastline. This class is used to describe a single geometry, the
coastline of Greece.

• noa:Region. This class depicts all areas in Greece along with their land
use.

• clc:CorineArea. This class imitates the Corine land cover nomenclature,
since it contains subclasses that map to all the items of the three levels of
the nomenclature. Instances of class noa:Region become instances of class
clc:CorineArea through the property noa:hasCorineLandCoverUse. CorineArea
class belongs to the Europe CORINE ontology, that is available online
through the HarmonISA1 project.

A description of some important properties follows:

• noa:hasGeometry. This property describes the geometry of an area in
Well-known text (WKT) format. Well-known text is a text markup lan-
guage for representing vector geometry objects on a map, spatial reference
systems of spatial objects and transformations between spatial reference
systems.

• noa:hasDateTime. This property provides information about both the
time and date of an acquired hotspot. It uses the xsd:dateTime data
type to represent this information.

• noa:hasCorineLandCoverUse. This property connects areas that are in-
stances of class noa:Region, to instaces of class clc:CorineArea. This
allows us to obtain all benefits offered by the CORINE ontology for the
area of reference.

1https://harmonisa.uni-klu.ac.at/
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5.3 Corine Land Cover Ontology
This ontology aims to modeling the CORINE Land Cover (CLC) nomenclature2.
It has two main classes clc:Area and clc:LandUse. clc:LandUse is the top
class of CLC taxonomy and contains classes that model the full hierarchy of
land uses. clc:Area represents every area with a specific land use. The main
properties of an instance of class clc:Area is

• strdf:hasGeometry

• clc:hasLandUse

The property noa:hasGeometry indicates where an area lies while clc:hasLandUse
matches an area with an instance of a clc:LandUse subclass. The stRDF de-
scription of an area that lies in a coniferous forest

5.3.1 Linked Oped Data for Rapid Mapping
Data described above constitute the main data product for fire mapping ap-
plication. However, technological solutions to such cases require integration of
multiple, heterogeneous data sources in order to produce complete thematic
maps. In order to increase the value of the final map product we interconnect
EO data with open linked data which is a new, rapidly developing research area
of Semantic Web that studies how one can make RDF data available on the
Web and interconnect it with other data with the aim of increasing its value for
everybody. The resulting “Web of data” has recently started being populated
with geospatial data. Two representative examples of such efforts are Linked-
GeoData3 (LGD) and GeoNames4 that are used in TELEIOS for the fire mon-
itoring and rapid mapping applications. In the following, the datasets utilized
in TELEIOS for the delivery of the fire monitoring application are described.

LinkedGeoData

LinkedGeoData is an effort aiming at enriching available geographic information
published as linked data. LinkedGeoData is primarily focused on publishing
OpenStreetMap (OSM)5 data as linked data.

OpenStreetMap data model consists of three main categories:

Nodes points on earth with lat/long values

Ways ordered sequences of nodes

Relations groupings of nodes and ways

The respective ontology, LinkedGeoData, is derived mainly from OSM tags, i.e.,
attribute-value annotations of nodes, ways, and relations, counting up to 500
classes, 50 object properties and about 15,000 datatype properties. Points are

2http://www.eea.europa.eu/publications/COR0-landcover
3http://linkedgeodata.org/
4http://www.geonames.org/
5http://www.openstreetmap.org/
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namespace prefix
http://strdf.di.uoa.gr/ontology# strdf
http://www.w3.org/1999/02/22-rdf-syntax-ns# rdf
http://linkedgeodata.org/triplify/ lgd
http://linkedgeodata.org/ontology/ lgdo
http://www.w3.org/2000/01/rdf-schema# rdfs
http://linkedgeodata.org/property/ lgdp
http://linkedgeodata.org/triplify/way10973689/ lgdw_way10973689
http://www.georss.org/georss/ georss
http://www.openlinksw.com/schemas/virtrdf# virtrdf
http://www.w3.org/2003/01/geo/wgs84_pos# geo
http://www.geonames.org/ontology# gn
http://teleios.di.uoa.gr/ontologies/noaOntology.owl# noa
http://www.w3.org/2002/07/owl# owl
http://dbpedia.org/resource/ dbpedia

Table 5.1: Namespaces used and corresponding prefixes

the type of geometry used by OSM to represent places, cities, etc., defined by
their longitude and latitude in the WGS84 coordinate reference system. Fur-
thermore, an effort was made to match DBpedia resources with LinkedGeoData,
taking into account the common classes between the two ontologies, for which
the owl:sameAs link was used to connect them. Currently, the knowledge base
of LGD comprises approximately 2 billion triples. For the fire mapping ap-
plication we isolated only data concerning Greece which led to approximately
840,000 triples.

N3 representation of Parthenon according to LGD

lgd:way10973689 rdf:type lgdo:Amenity, lgdo:Tourism, lgdo:Building,
lgdo:Historic, lgdo:Attraction, lgdo:Way,
lgdo:HistoricRuins ;

lgdo:directType lgdo:Attraction, lgdo:Building, lgdo:HistoricRuins ;
lgdp:int_name "Parthenon" .

lgdo:hasNodes lgdw_way10973689:nodes .
georss:polygon "37.9715909 23.7262015 37.9712993 23.7262856
37.9714414 23.7270791 37.971733
23.7269951 37.9715909 23.7262015" .

lgdw_way10973689:nodes rdf:type rdf:Seq .
lgdw_way10973689:nodes rdf:_1 lgd:node97810425 ;

rdf:_2 lgd:node97810428 ;
rdf:_3 lgd:node97810431 ;
rdf:_4 lgd:node97810434 ;
rdf:_5 lgd:node97810425 .

lgd:node97810434 geo:geometry "POINT(23.727 37.9717)"^^virtrdf:Geometry .
lgd:node97810425 geo:geometry "POINT(23.7262 37.9716)"^^virtrdf:Geometry .
lgd:node97810428 geo:geometry "POINT(23.7263 37.9713)"^^virtrdf:Geometry .
lgd:node97810431 geo:geometry "POINT(23.7271 37.9714)"^^virtrdf:Geometry .
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ns2:node97810425 geo:geometry "POINT(23.7262 37.9716)"^^virtrdf:Geometry .

The triples above describe Parthenon according to LGD transformation from
OSM data. Please note that geometry of Parthenon is defined both with se-
quence of constituent nodes and their geometry and with object value of prop-
erty georss:polygon that is a string with all lat/long pairs of constituent nodes.

N3 representation of Parthenon for storing in Strabon

lgd:way10973689 rdf:type lgdo:Amenity, lgdo:Tourism, lgdo:Building,
lgdo:Historic, lgdo:Attraction, lgdo:Way,
lgdo:HistoricRuins;
lgdo:directType lgdo:Attraction, lgdo:Building, lgdo:HistoricRuins ;
lgdo:hasNodes lgdw_way10973689:nodes ;
lgdp:int_name "Parthenon" ;
georss:polygon "POLYGON(( 23.7262015 37.9715909, 23.7262856 37.9712993,
23.7270791 37.9714414, 23.7269951 37.971733,
23.7262015 37.9715909))"^^<http://strdf.di.uoa.gr/ontology\#WKT> ;

For using LGD data in a rapid mapping application in Strabon we chose to omit
constituent nodes for each way and define its geometry according to data model
described in [KKN+11].

GeoNames

GeoNames 6 is a gazetteer which collects both spatial and thematic information
for various placenames around world. Data of GeoNames is available through
various Web services but they are also published as linked data. GeoNames
database contains over 10 million geographical names corresponding to over 7.5
million unique features. As in LGD we used only data about Greece that are
comprised by approximately 575000 triples describing roud 41000 features.

Every feature in GeoNames ontology belongs in class Feature that has no
subclasses. Features are characterized as country, town, road, etc. by codes
that are assigned as object of properties gn:featureClass and gn:featureCode.
Values of property gn:featureClass categorizes each feature in one of the fol-
lowing categories while values of property gn:featureCode narrows down these
categories.

A country, state, region...

H stream, lake ....

L parks,area, ...

P city, village,...

R road, railroad

S spot, building, farm

T mountain,hill,rock,...

U undersea
6http://www.geonames.org/
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V forest,heath,...

Furthermore, the features in GeoNames are interlinked with each other defin-
ing

childern regions that are inside the underlined feature

neighbours neigbouring countreis

nearby features features that have certain distance with the underlined fea-
ture

Finally, geonames has information only for position of a feature (described using
wgs_84:lat and wgs_84:long) and not its full geometry. The following example
shows how Athens is defined in GeoNames.

N3 description of Athens according to GeoNames

<http://sws.geonames.org/264371/> a gn:Feature ;
wgs84_pos:lat "37.97945" ;
wgs84_pos:long "23.71622" ;
gn:alternateName "Athens"@en ;
gn:countryCode "GR" ;
gn:featureClass gn:P ;
gn:featureCode gn:P.PPLC ;
gn:locationMap <http://www.geonames.org/264371/athens.html> ;
gn:name "Athens" ;
gn:nearbyFeatures <http://sws.geonames.org/264371/nearby.rdf> ;
gn:officialName "Athens"@gr ;
gn:parentADM1 <http://sws.geonames.org/6692632/> ;
gn:parentADM2 <http://sws.geonames.org/264353/> ;
gn:parentCountry <http://sws.geonames.org/390903/> ;
gn:parentFeature <http://sws.geonames.org/264353/> ;
gn:population "729137" ;
gn:wikipediaArticle <http://af.wikipedia.org/wiki/Athene> ;
rdfs:isDefinedBy "http://sws.geonames.org/264371/about.rdf" ;
owl:sameAs dbpedia:Athens ;
wgs84_pos:alt "70" .

The triples above describe Athens according to GeoNames ontology. Please note
that in order to use it in Strabon we have to replace the triples for latitude and
longitute with the triple
noa:hasGeography "POINT(23.71622 37.97945)"\^\^strdf:WKT.

Greek administrative geography

While linked open geospatial data becomes more and more popular, many gov-
ernments publish open data about administrative divisions, statistical informa-
tion, etc. in their portals [GDH08]. We have taken advantage of this data
openness for Greece7 and since these haven’t been published as linked data, we
publish it as such focusing on the Greek administrative division and geometry
of lowest divisions (municipalities).

7http://geodata.gov.gr/geodata/
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5.4 Examples
In this section we demonstrate some examples about using data that are de-
scribed above. The core concept of this examples is fire mapping application
but our system is not limited only to such applications. First we demonstrate
examples that utilize ontogies described to discover data of interest. Afterwards
we demonstrate a series of examples that exhibit how Semantic Web technolo-
gies and linked open data can enhance Earth Observation applications like rapid
mapping.

5.4.1 Data discovery
In this section examples about discovering data of interest are demonstrated

Retrieve shapefiles that contains acquisitions between 20:00 and 20:30 of
August 21, 2010 and done by sensor MSG1_RSS

SELECT ?filename
WHERE { ?file rdf:type noa:ShpFile .

?file noa:hasFilename ?filename .
?file noa:hasAcquisitionTime ?sensingTime .
FILTER( str(?sensingTime) > "2010-08-21T20:00:00" ) .
FILTER( str(?sensingTime) < "2010-08-21T20:30:00" ) .
?file noa:isDerivedFromSensor ?sensor .
FILTER( str(?sensor) = "MSG1_RSS" ) . }

The result of the query is displayed below:
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?filename
MSG1_RSS_10-08-21_20:05_cloud-masked.shp
MSG1_RSS_10-08-21_20:05_plain.shp
MSG1_RSS_10-08-21_20:10_cloud-masked.shp
MSG1_RSS_10-08-21_20:10_plain.shp
MSG1_RSS_10-08-21_20:15_cloud-masked.shp
MSG1_RSS_10-08-21_20:15_plain.shp
MSG1_RSS_10-08-21_20:20_cloud-masked.shp
MSG1_RSS_10-08-21_20:20_plain.shp
MSG1_RSS_10-08-21_20:25_cloud-masked.shp
MSG1_RSS_10-08-21_20:25_plain.shp

This is a quite simple query that utilizes only data covered by NOA ontology. It
searches for shapefiles (instances of class noa:ShpFile). Each shapefile contains
information from a specific acquisition. This query searches for acquisitions by
sensor MSG1_RSS taken betwenn 20:00 and 20:30 of August 21, 2010 and
for every instance found the filename is projected. So, user can download the
respective file.

Discover all files concerning NOA use case

SELECT ?filename {
?collection rdf:type iman:NOA-UC .
?file noa:belongToCollection ?collection .
?file noa:hasFilename ?filename . }

Some of the results of the query are displayed below:

?filename
H-000-MSG1__-MSG1_RSS____-IR_039___-000007___-201008211900-C_
H-000-MSG1__-MSG1_RSS____-IR_039___-000007___-201008211905-C_
H-000-MSG1__-MSG1_RSS____-IR_039___-000007___-201008211910-C_
....
MSG1_RSS_10-08-21_19:00_cloud-masked.shp
MSG1_RSS_10-08-21_19:00_plain.shp
MSG1_RSS_10-08-21_19:05_cloud-masked.shp
MSG1_RSS_10-08-21_19:05_plain.shp
MSG1_RSS_10-08-21_19:10_cloud-masked.shp
MSG1_RSS_10-08-21_19:10_plain.shp
MSG1_RSS_10-08-20_08:10_plain.shp
....

This query makes use of ImageAnnotation ontology so user who is not aware
of the available data and is interested in the NOA Use Case can pose the pre-
ceding query to discover relative filenames.

Discover only shapefiles concerning NOA use case
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SELECT ?filename {
?collection rdf:type iman:NOA-UC .
?file noa:belongToCollection ?collection .
?file noa:hasFilename ?filename .
?collection eolo:hasProcessingLevel eolo:L1 . }

A part of the result of the query is displayed below:

?filename
MSG1_RSS_10-08-21_19:00_cloud-masked.shp
MSG1_RSS_10-08-21_19:00_plain.shp
MSG1_RSS_10-08-21_19:05_cloud-masked.shp
MSG1_RSS_10-08-21_19:05_plain.shp
MSG1_RSS_10-08-21_19:10_cloud-masked.shp
MSG1_RSS_10-08-21_19:10_plain.shp
MSG1_RSS_10-08-20_08:10_plain.shp
....

This query is quite similar to the previous one. The difference is that it defines
more restrictions. It asks only for files belonging to collections with processing
level one. This means results of processing on raw data. Thus, it will retrieve
filenames only of shapefiles.

5.4.2 Rapid mapping
The following examples give an overview about how Semantic Web technologies
and open linked data can be used in rapid mapping applications.

As long as automatic map generation is concerned Semantic Web technolo-
gies provide tools for handling heterogeneous data in a homogeneous way, while
Linking Open Data cloud supplies abundance of data in addition to internal
EO data. Thus, a user has in her hands datasets covering a large variety of
geospatial information from minor, but interesting, entities like fire stations or
hospitals to large entities like countries and their administrative divisions. So,
instead of manually combining heterogeneous data a user should only pose a
stSPARQL query for each layer that she wants to depict in a map and overlay
the retrieved data. In order the query results to be depicted in a map there
should be exactly one geospatial variable in select clause of query. Results of
such queries can be encoded in SHP or KML formats.

For example, posing the queries in following examples and overlaying their
results someone can create a map that depicts fires of august of 2007 along with
auxiliary information (Figure 5.2).

Get all hotspots in Peloponnese that was detected from 23rd to 26th of Au-
gust 2007

SELECT ?h ?hGeo ?hAcqTime ?hConfidence ?hProvider ?hConfirmation ?hSensor
WHERE {

?h a noa:Hotspot ;
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noa:hasGeometry ?hGeo ;
noa:hasAcquisitionTime ?hAcqTime ;
noa:hasConfidence ?hConfidence ;
noa:isProducedBy ?hProvider ;
noa:hasConfirmation ?hConfirmation ;
noa:isDerivedFromSensor ?hSensor ;
FILTER( "2007-08-23T00:00:00" <= str(?hAcqTime)

&& str(?hAcqTime) <= "2007-08-26T23:59:59" ) .
FILTER( strdf:contains("POLYGON((21.027 38.36, 23.77 38.36,

23.77 36.05, 21.027 36.05, 21.027 38.36))"^^strdf:WKT, ?hGeo) ) .}

This query retrieves all hotspots that where detected during 23rd-26th of August
2007. Along with uris every information about hotspots are retrieved, e.g., time
of acquisition (?hAcqTime), provider (?hProvider) and their geometry (?hGeo),
as well.

Get all areas with a characterized land use and the respective label of land
use in Peloponnese

SELECT ?a ?aGeo ?aLandUseType
WHERE {

?a a clc:Area ;
clc:hasLandUse ?aLandUse ;
noa:hasGeometry ?aGeo .

?aLandUse a ?aLandUseType .
FILTER( ?aLandUseType = clc:AgriculturalAreas
|| ?aLandUseType = clc:ArtificialSurfaces
|| ?aLandUseType = clc:ForestsAndSemiNaturalAreas
|| ?aLandUseType = clc:Water_Bodies
|| ?aLandUseType = clc:Wetlands ) .
FILTER( strdf:contains("POLYGON((21.027 38.36, 23.77 38.36, 23.77 36.05,

21.027 36.05, 21.027 38.36))"^^strdf:WKT, ?aGeo) ) . }

This query retrieves all areas with a determined land use and the according
first level categorization (remember that Corine Land Cover nomenclature has
3 levels of categorization)

Get all primary roads in Peloponnese

SELECT ?r ?rGeo
WHERE {

?r a ?rType ;
noa:hasGeometry ?rGeo .
FILTER( ?rType = lgdo:Primary ) .
FILTER( strdf:contains("POLYGON((21.027 38.36, 23.77 38.36, 23.77 36.05,

21.027 36.05, 21.027 38.36))"^^strdf:WKT, ?rGeo) ) .}

This query utilizes information from LinkedGeoData dataset and retrives all
primary roads of Pelloponese

Get all seats of a first-order administrative division in Peloponnese

SELECT ?n ?nName ?nGeo
WHERE {

?n a gn:Feature ;
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noa:hasGeography ?nGeo ;
gn:name ?nName ;
gn:featureCode ?featureCode .
FILTER( ?featureCode = gn:P.PPLA || ?featureCode = gn:P.PPLA2 ) .
FILTER( strdf:contains("POLYGON((21.51 36.41, 22.83 36.41,
22.83 37.69, 21.51 37.69, 21.51 36.41))"^^strdf:WKT, ?nGeo)). }

This query asks for every feature in GeoNames that is contained in Peloponnese
and its gn:featureCode is gn:P.PPLA that is the code for seats of first-order
administrative divisions. Apart from information about every node (variables
?n and ?nGeo), the geometry (variable ?nGeo) of the feature is also returned so
it can be depicted in a map.

Get all Municipality boundaries in Peloponnese

SELECT ?g ?gYpesCode ?gContainer ?gLabel ( strdf:boundary(?gGeog) as ?gBoundary )
WHERE {

?g a gag:Dhmos ;
noa:hasYpesCode ?gYpesCode ;
gag:isPartOf ?gContainer ;
rdfs:label ?gLabel ;
strdf:hasGeometry ?gGeog .

FILTER( strdf:contains("POLYGON((21.027 38.36, 23.77 38.36, 23.77 36.05,
21.027 36.05, 21.027 38.36))"^^strdf:WKT, ?gGeog) ) . }

This query makes use of information from dataset about Greek Administrative
Geography. Especially, it retrieves all lowest administrative divisions (munici-
palities) along with some information about them (?gYpesCode, ?gContainer
and ?gLabel) and their boundaries

The resulting map is shown if Figure 5.2.
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Figure 5.1: Classes in NOA’s ontology
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Figure 5.2: A map example that can be created by overlaying data retrieved by
many queries on EO and Linked Geospatial Data
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