Implemented Systems

Presenter: Manos Karpathiotakis
Outline

• Relational DBMS with a geospatial extension
• RDF stores with a geospatial component:
 – Research prototypes
 – Commercial systems
How does an RDBMS handle geometries? (1/2)

- Geometries are not explicitly handled by query language (SQL)
- Define datatypes that extend the SQL type system
 - Model geometries using Abstract Data Type (ADT)
 - Hide the structure of the data type to the user
 - The interface to an ADT is a list of operations
 - For spatial ADTs: Operations defined according to OGC Simple Features for SQL
 - Vendor-specific implementation irrelevant - extend SQL with geometric functionality independently of a specific representation/implementation
How does an RDBMS handle geometries? (2/2)

- Special indices needed for geometry data types
- Specialised query processing methods
Implemented Systems

• Will examine following aspects:
 – Data model
 – Query language
 – Functionality exposed
 – Coordinate Reference System support
 – Indexing Mechanisms
Research Prototypes

• Strabon
• Parliament
• Brodt et al.
• Perry
Strabon

- Storage and query evaluation module for stSPARQL
- Geometries represented using typed literals
 - WKT & GML serializations supported
- Spatial predicates represented as SPARQL functions
 - OGC-SFA, Egenhofer, RCC8 families exposed
 - Spatial aggregate functions
- Support for multiple coordinate reference systems

- GeoSPARQL support
 - Core
 - Geometry Extension
 - Geometry Topology Extension
Strabon - Implementation

Parliament

- Storage Engine
- Developed by Raytheon BBN Technologies (Dave Kolas)
- First implementation of GeoSPARQL
 - Geometries represented using typed literals
 - WKT & GML serializations supported
 - Three families of topological functions exposed
 - OGC-SFA
 - Egenhofer
 - RCC8
 - Multiple CRS support
Parliament - Implementation

- Rule engine included
- Paired with query processor
- R-tree used

Brodt et al.

- Built on top of RDF-3X
- Implemented at University of Stuttgart
- No formal definitions of data model and query language given
- Geometries expressed according to OGC-SFA
 - Typed Literals
 - WKT serialization supported
 - Expressed in WGS84
- Spatial predicates represented as SPARQL filter functions
 - OGC-SFA functionality exposed
Focus on spatial query processing and spatial indexing techniques for spatial selections
- e.g. "Retrieve features located inside a given polygon"

- Naive spatial selection operator
 - Placed in front of the execution plan which the planner returns

- Spatial index (R-Tree) implemented
 - Only utilized in spatial selections

Available upon request
Perry

- Built on top of Oracle 10g
- Implemented at Wright State University
- Implementation of SPARQL-ST
 - Upper-level ontology imposed
- Geometries expressed according to GeoRSS GML
- Spatial and temporal variables introduced
- Spatial and temporal filters used to filter results with spatiotemporal constraints
 - RCC8 calculus
 - Allen’s interval calculus
Perry

- Spatiotemporal operators implemented using Oracle's extensibility framework
 - Three spatial operators defined
- Strictly RDF concepts implemented using Oracle’s RDF storage and inferencing capabilities
- R-Tree used for indexing spatial objects

Available upon request
Commercial RDF Stores

- AllegroGraph
- OWLIM
- Virtuoso
- uSeekM
AllegroGraph

- Well-known RDF store, developed by Franz Inc.
- Two-dimensional point geometries
 - Cartesian / spherical coordinate systems supported
- GEO operator introduced for querying
 - Syntax similar to SPARQL’s GRAPH operator
 - Available operations:
 - Radius / Haversine (Buffer)
 - Bounding Box
 - Distance
- Linear Representation of data
 - X and Y ordinates of a point are combined into a single datum
- Distribution sweeping technique used for indexing
 - Strip-based index
• Semantic Repository, developed by Ontotext
• Two-dimensional point geometries supported
 – Expressed using W3C Geo Vocabulary
 • Point Geometries
 • WGS84
• Spatial predicates represented as property functions
 – Available operations:
 • Point-in-polygon
 • Buffer
 • Distance

• Implemented as a Storage and Inference Layer for Sesame
• Custom spatial index used
• Closed Source
 – Free version available for evaluation purposes
 (http://www.ontotext.com/owlim)
Virtuoso

- Multi-model data server, developed by OpenLink
- Two-dimensional point geometries
 - Typed literals
 - WKT serialization supported
 - Multiple CRS support
- Spatial predicates represented as functions
 - Subset of SQL/MM supported

- R-Tree used for indexing
- Spatial capabilities firstly included in Virtuoso 6.1
- Closed Source
 - Does not include the spatial capabilities extension
• Add-on library for Sesame-enabled semantic repositories, developed by OpenSahara
• Geometries expressed according to OGC-SFA
 – WKT serialization
 – Only WGS84 supported
• Spatial predicates represented as functions
 – OGC-SFA functionality exposed
 – Additional functions
 • e.g. shortestline(geometry,geometry)

• Implemented as a Storage and Inference Layer (SAIL) for Sesame
 – May be used with RDF stores that have a Sesame Repository/SAIL layer
• R-tree-over-GiST index used (provided by PostGIS)
• Open Source, Apache v2 License
• Available from https://dev.opensahara.com/projects/useekm
<table>
<thead>
<tr>
<th>System</th>
<th>Language</th>
<th>Index</th>
<th>Geometries</th>
<th>CRS support</th>
<th>Comments on Functionality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strabon</td>
<td>stSPARQL/GeoSPARQL*</td>
<td>R-tree-over-GiST</td>
<td>WKT / GML support</td>
<td>Yes</td>
<td>• OGC-SFA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Egenhofer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• RCC-8</td>
</tr>
<tr>
<td>Parliament</td>
<td>GeoSPARQL</td>
<td>R-Tree</td>
<td>WKT / GML support</td>
<td>Yes</td>
<td>• OGC-SFA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Egenhofer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• RCC-8</td>
</tr>
<tr>
<td>Brodt et al. (RDF-3X)</td>
<td>SPARQL</td>
<td>R-Tree</td>
<td>WKT support</td>
<td>No</td>
<td>OGC-SFA</td>
</tr>
<tr>
<td>Perry</td>
<td>SPARQL-ST</td>
<td>R-Tree</td>
<td>GeoRSS GML</td>
<td>Yes</td>
<td>RCC8</td>
</tr>
<tr>
<td>AllegroGraph</td>
<td>Extended SPARQL</td>
<td>Distribution sweeping technique</td>
<td>2D point geometries</td>
<td>Partial</td>
<td>• Buffer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Bounding Box</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Distance</td>
</tr>
<tr>
<td>OWLIM</td>
<td>Extended SPARQL</td>
<td>Custom</td>
<td>2D point geometries</td>
<td>No</td>
<td>• Point-in-polygon</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Buffer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Distance</td>
</tr>
<tr>
<td>Virtuoso</td>
<td>SPARQL</td>
<td>R-Tree</td>
<td>2D point geometries</td>
<td>Yes</td>
<td>SQL/MM (subset)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(in WKT)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>uSeekM</td>
<td>SPARQL</td>
<td>R-tree-over-GiST</td>
<td>WKT support</td>
<td>No</td>
<td>OGC-SFA</td>
</tr>
</tbody>
</table>
Conclusions

- **Semantic Geospatial Systems:**
 - Research Prototypes
 - Commercial Systems

- **Next topic:** Applications of Linked Geospatial Data